
Software design

ICT284 Systems Analysis and Design

Topic 9

This topic focuses on the design activity of designing the software

classes and methods. The requirements models from the analysis

stage are extended to a set of detailed object-oriented design

models that specify the system solution in terms of collaborating

objects, their attributes, and their methods.

The most important models are the design class diagram, which

documents the classes that will be built for the system, and the

sequence diagram, which defines the interactions between objects in

order to execute a use case. These models then provide the basis for

coding the solution.

About this topic

1. Explain how information systems are used within organisations to fulfil organisational
needs

2. Describe the phases and activities typically involved in the systems
development life cycle

3. Describe the professional roles, skills and ethical issues involved in systems analysis
and design work

4. Use a variety of techniques for analysing and defining business problems and
opportunities and determining system requirements

5. Model system requirements using UML, including use case diagrams and
descriptions, activity diagrams and domain model class diagrams

6. Explain the activities involved in systems design, including designing the system
environment, application components, user interfaces, database and software

7. Represent early system design using UML, including sequence diagrams,
architectural diagrams and design class diagrams

8. Describe tools and techniques for planning, managing and evaluating systems
development projects

9. Describe the key features of several different systems development methodologies

10.Present systems analysis and design documentation in an appropriate,
consistent and professional manner

Unit learning outcomes addressed in
this topic

After completing this topic you should be able to:

• Explain the purpose and objectives of the core process ‘design the
software classes and methods’ in the SDLC

• Briefly describe some fundamental principles of object-oriented
software design

• Describe the steps in developing a design class diagram from the
use case models created in analysis

• Be able to interpret first-cut and final design class diagrams

• Be able to interpret domain-level sequence diagrams to model
object behaviour

• Briefly explain the different types of objects and layers in an
multi-layer sequence diagram

Topic learning outcomes

READING

• Satzinger, Jackson & Burd, Chapter 12

Omit section ‘Designing with CRC cards’

• Satzinger, Jackson & Burd, Chapter 13

Omit sections ‘Use Case Realization with
Communication Diagrams’ and ‘Design Patterns’

Except where otherwise referenced, all images in these slides are from those
provided with the textbook: Satzinger, J., Jackson, R. and Burd, S. (2016)
Systems Analysis and Design in a Changing World, 7th edition, Course
Technology, Cengage Learning: Boston. ISBN-13 9781305117204

Resources for this topic

• Introduction

• Principles of object-oriented design

• Steps in object-oriented design

• Design class diagrams

• Sequence diagrams

• Multilayer sequence diagrams

• Package diagrams

Topic outline

Introduction

Design activities - reminder

… in this topic we will focus on
 design the software classes and methods

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Key design questions for each
activity

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Software design in the SDLC

• Bridge between users’ requirements and
programming of new system

• Process by which a set of detailed OO design
models are built to be used for coding

• Specifies the system solution in terms of
collaborating objects, their attributes, and their
methods

• Use case driven: design is carried out use case
by use case

Object-oriented programming

• Objects are responsible for carrying out system
processing

• Each object has data and program logic
encapsulated within it

• These are defined in a class definition

• Objects are instantiated from the class template
when the program executes

• An OO program consists of a set of instantiated
objects cooperating to accomplish a result

• The objects work together by sending each
other messages which invoke the methods
defined for the object

Reminder…

Example:
part of a
Java
program

Class definition
for Student,
including
methods
getFullName,
getGPA, etc

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Reminder…

OO software design: Bridging from
analysis to implementation

• Requirements models (from Topic 3, 4, 5) are
extended to design models

• Again, there are models for both things, and
processes about things

• Design models are created in parallel to actual
coding/implementation with iterative SDLC

• Agile approach says create models only if they
are necessary: simple aspects don’t need a
design model before coding

Analysis to design to
implementation: models

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Design models

Design class diagrams and sequence diagrams are
the most important diagrams for detailed design

• Design class diagrams document the classes
that will be built for the system

• They describe the classes, navigation
between the classes, attribute names and
properties and method names and properties

• Sequence diagrams define the interactions
between objects in order to execute a use case

• Interactions are called messages

• Correspond to method calls in programming
language

Slide 15

Design models: Design class
diagram

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Design models: Design class diagram

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Visio 2010 – design class diagram has additional
features that are ‘switched off’ in domain class
diagram

Own image

Design models:
Sequence diagram

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Design models: Package diagram

showing
grouping of
classes
relevant to a
use case
within a 3
layer
architecture

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

• The final activity in the Design phase is to design the
software classes and methods

• An OO program consists of a set of instantiated objects
cooperating to accomplish a result

• The objects work together by sending each other
messages which invoke the methods defined for the object

• To design OO software, we continue to add detail to the
requirements models:

• Design class diagrams document the classes and
methods that will be built for the system

• Sequence diagrams define the interactions between
objects in order to execute a use case

• Package diagrams show how classes are distributed
across a three-layer architecture

Summing up…

OO Design principles

Fundamental design principles

Decisions about OO design options are guided by
some fundamental design principles:

• Object Responsibility

• Coupling

• Cohesion

• Separation of Responsibilities

• Protection from Variations

• Indirection

Fundamental design principles:
Object responsibility

• A design principle that states objects are
responsible for carrying out system processing

• A fundamental assumption of OO design and
programming

• Responsibilities include “knowing” and “doing”:

• Objects know about other objects
(associations) and they know about their
attribute values

• Objects know how to carry out methods, do
what they are asked to do

Fundamental design principles:
Coupling

• A measure of how closely related classes are
linked (tightly or loosely coupled)

• Two classes are tightly coupled of there are lots
of associations with another class

• Two classes are tightly coupled if there are lots
of messages to another class

• It is best to have classes that are loosely
coupled

• If deciding between two alternative designs,
choose the one where overall coupling is less

Fundamental design principles:
Cohesion

• A measure of the focus or unity of purpose
within a single class (high or low cohesiveness)

• A class has high cohesiveness if all of its
responsibilities are consistent and make sense
for purpose of the class

• e.g. a customer carries out responsibilities
that naturally apply to customers

• A class has low cohesiveness if its
responsibilities are broad or makeshift

• It is best to have classes that are highly
cohesive

Fundamental design principles:
Separation of responsibilities

• Applies to a group of classes

• Segregate classes into packages or groups based
on primary focus of the classes

• Basis for multi-layer design – view, domain, data

• Facilitates multi-tier computer configuration

Fundamental design principles:
Protection from variations

• A design principle that states parts of a system
unlikely to change are separated (protected)
from those that will surely change

• Separate user interface forms and pages that
are likely to change from application logic

• Put database connection and SQL logic that is
likely to change in a separate classes from
application logic

• Use adaptor classes that are likely to change
when interfacing with other systems

Fundamental design principles:
Indirection

• A design principle that states an intermediate
class is placed between two classes to decouple
them but still link them

• e.g. a controller class between UI classes and
problem domain classes

• Supports low coupling

• Indirection can be used to support security by
directing messages to an intermediate class as in
a firewall

Some fundamental principles guide OO design:

• Object Responsibility – objects are responsible for
system processing

• Coupling - best to have classes that are loosely coupled

• Cohesion - best to have classes that are highly cohesive

• Separation of Responsibilities - Segregate classes into
packages or groups based on primary focus of the classes
(e.g. view, domain, data)

• Protection from Variations - parts of a system unlikely
to change are separated (protected) from those that will

• Indirection - an intermediate class is placed between
two classes to decouple them but still link them

Summing up…

Steps of OO software design

Steps of OO design

• Begin with the models from analysis

• Work with a single use case at a time

• The objective is to end up with a complete
design class diagram that includes all the
information and behaviour needed to support
the functional requirements of the system

• Iterative – create a first cut design class
diagram, then continue to update it

Steps of object-
oriented design

Three paths:

• Simple use case use
CRC Cards

• Medium complexity
use case use
Communication
Diagram

• Complex use case
use Sequence
Diagram

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Design steps

• Begin with the models from analysis

• Work with a single use case at a time

• Develop first-cut design class diagram

• Identify and define the methods required in each
class (e.g. using sequence diagram)

• First cut sequence diagram

• Multilayer sequence diagram

• Update the design class diagram

• Continue for additional use cases

• Partition classes into packages as appropriate

Design class diagrams

Design class diagrams

• The design class diagram contains the final
definition of each class in the OO design

• The primary source for the design class diagram
is the domain class diagram drawn during
analysis

• During design the domain classes are built on
and made more precise (as we are now defining
software)

• Additional classes are added that aren’t in the
problem domain, to handle things like user
interface or data access

• Navigation is added to show how classes
reference each other

Different types of design
classes
A system is structured into different types (stereotypes) of
classes:

• entity class - a design stereotype for a problem domain
class. Usually persistent

• boundary class or view class - provides the means by
which an actor interacts with the system, e.g. for user
interface window, dialogue box, Web page; or for system
interface, an application program interface (API)

• controller class - a class that mediates between
boundary classes and entity classes, acting as a
switchboard between the view layer and domain layer

• data access class - a class that is used to retrieve data
from and send data to a database

Design class stereotypes

• Stereotypes indicate what type of class it is.
Indicate on the diagram by << >>

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Notation for a design class

• Syntax for Name, Attributes, and Methods

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

From domain class to design
class
Elaborate attributes:

• Visibility

• Attribute name

• Data type

• Initial value

• Property

Add method signatures:

• Method visibility

• Method name

• Method parameter list

• Return type expression

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Design steps

• Begin with the models from analysis

• Work with a single use case at a time

• Develop first-cut design class diagram

• Identify and define the methods required in each
class (e.g. using sequence diagram)

• First cut sequence diagram

• Multilayer sequence diagram

• Update the design class diagram

• Continue for additional use cases

• Partition classes into packages as appropriate

Developing design classes 1:
Attributes

• Visibility

• Attribute name in lower case camelback
notation

• Data Type expression e.g. character, string,
integer, number, currency, date

• Initial value - the default value (if applicable)

• Property — if applicable, such as {key}

Examples:

-accountNo: String {key}

-startingJobCode: integer = 01

Developing design classes 2:
Attribute visibility

Visibility indicates whether other objects can
directly access the attribute

+ the attribute is public or visible

- the attribute is private or invisible

• Usually attributes would be private, meaning
they can only be accessed via the methods in
the same class

Own image

Developing design classes 3:
Methods

• Visibility

• Method name - verb-noun; camelCase

• Parameter list (variables passed to method)

• Return type expression – the type of the data
returned

Examples:

+getName(): string

-checkValidity(date): int

Developing design classes 4:
Method visibility

Visibility indicates whether a method can be
invoked by another object

+ the method is public or visible

- the method is private or invisible

• Usually methods would be public so that they
can be invoked in response to a message sent
by another

Own image

Developing design classes 5:

• Class level method applies to all instances of
class rather than individual ones. Underlined.

+findStudentsAboveHours(hours): Array

+getNumberOfCustomers(): Integer

• Class level attribute has the same value for
all objects of the class. Underlined.

 -noOfPhoneSales: int

• Abstract class– class that can’t be instantiated.
Only for inheritance. Name in Italics.

• Concrete class—class that can be instantiated.

Example of design class with
elaborated attributes and method
signatures

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Developing design classes 6:
Navigation visibility
• For one object to interact with another, the first object must

be visible to the second object

• Accomplished by adding an object reference variable to a
class (mySale below; though not always shown)

• Shown as an arrow head on the association line - Customer
can find and interact with Sale because it has mySale
reference variable

• This navigation is one way, others could be two-way

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Navigation visibility guidelines

• One-to-many associations that indicate a
superior/subordinate relationship are usually
navigated from the superior to the subordinate

• Mandatory associations, in which objects in one
class can’t exist without objects of another class,
are usually navigated from the more
independent class to the more dependent

• When an object needs information from another
object, a navigation arrow might be required

• Navigation arrows may be bidirectional

Drawing the First-Cut Design
Class Diagram

Extend the domain class diagram, by:

1. Add a controller class to be in charge of the use
case

2. Elaborating the attributes of each class with
visibility and type

3. Adding navigation visibility arrows to the
diagram

• Proceed use case by use case

• At this point we haven’t defined the methods
yet, so that is left blank

Example:
RMO Sales
Subsystem

Start with
Domain
Class
Diagram…

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

First cut
design class
diagram for
use case
Create
telephone
sale

includes
controller
class and
navigation
visibility

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

• The Design Class Diagram is built from the
Domain Model Class Diagram by adding
information:

• Attribute elaboration – data type, properties,
visibility

• Method signatures – method name, parameters,
return type, visibility

• Navigation visibility is also added between classes to
show how objects can interact

• Additional classes (boundary, controller, data access)
to handle interactions with actors or between layers

• The first cut DCD includes controller class and
navigation, but no methods as they haven’t
been defined yet

Summing up…

Sequence diagrams

Design steps

• Begin with the models from analysis

• Work with a single use case at a time

• Develop first-cut design class diagram

• Identify and define the methods required in each
class (e.g. using sequence diagram)

• First cut sequence diagram

• Multilayer sequence diagram

• Update the design class diagram

• Continue for additional use cases

• Partition classes into packages as appropriate

Reminder – System Sequence
Diagram (SSD)

• Shows only a single object, :System

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Sequence diagrams

• The systems sequence diagram (SSD) from
analysis is expanded by adding a use case
controller and then the domain classes for the
use case

• Messages and returns are added to the sequence
diagram as responsibilities are assigned to each
class

• Simple use case might be left with two layers if
the domain classes are responsible for database
access. More complex systems add a data access
layer as a third layer to handle database access

Use case Controller

• Switchboard between user-interface classes and
domain layer classes

• Reduces coupling between view and domain
layer

• A controller can be created for each use case,
however, several controllers can be combined
together for a group of related use cases

• It is a completely artificial class

Elements of Sequence Diagrams

• Lifeline

• The dashed line under the object which serves
as an origin point and a destination point for
messages

• Activation lifeline

• The vertical box on a lifeline which indicates
the time period when the object is executing
based on the message

• Messages have origins and destinations

• May be on lifeline or on object box

• Return values may be dashed message arrow,
or on same message

OOD with Sequence Diagrams

• Choose a use case

 Input models – activity diagram, SSD,
classes

• Create first-cut design class diagram

• Extend input messages

Add all required internal messages

Origin and destination objects

Elaborate each message

• Add other layers as desired (view, data access)

• Update design class diagram

 Guidelines for drawing SD

• From each input message of the use case,
determine all internal messages that result

- what is the objective of the message, what
information is needed and what classes need
it (destination) and what classes are source

• Determine all objects (from classes) that will be
needed for the use case

• Flesh out each message with true/false
conditions, parameters and returned values, etc

Assumptions for first-cut sequence
diagrams

• Perfect technology assumption

 No logon or other technical issues

• Perfect memory assumption

 No need to read or write data

• Perfect solution assumption

 No exception conditions, no error handling

Example:
Fill Shopping Cart

Input activity
diagram

• Note the activity
flows that cross
the system
boundary

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Example:
Fill Shopping Cart

SSD

• Note the input
and return
messages

• Note the
repeating
message

Adds an item and (multiple) accessory
items to the shopping cart

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Example:
Fill Shopping Cart

To carry out this use
case need to know
about Customer,
OnlineCart, CartItem;
and also information
about ProductItem
(what it is),
InventoryItem (is it in
stock), PromoOffering
(price)

… this gives us the
First Cut DCD

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Example: Fill Shopping Cart

• First step in addItem message - Create a cart if
first item in the purchase
 Note true/false test for firstItem, two ways of returning aCrt values,

named objects, activation lifelines, message origins and destinations

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Example: Fill Shopping Cart

• Completion of addItem message

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Example: Fill Shopping Cart

Note origin and destination objects and visibility

• createCart () – cart handler knows if first item

• aCrt:=createCart() – customer owns onlineCart

• addItem() – forwarded message

• createCartItem() – cartItem responsible for
creating itself and getting values

• getPrice() – just returns the price

• getDescription() – just returns description

• updateQty(qty) – initiates updates

… these can now be added to the design class diagram

Example: Fill Shopping Cart

addAccessory
message

(top part of
SD as before)

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Example - Design class diagram
updated with methods

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

• To define the methods that are required in the
design class diagram, each use case is
considered in turn:

• The systems sequence diagram (SSD) from
analysis is expanded into a first-cut sequence
diagram by adding a use case controller and
then the domain classes for the use case

• The internal messages and returns that result
from the user case are determined and added to
the SD

• The methods are then added to the design class
diagram

Summing up…

Multilayer Sequence Diagrams

Design steps

• Begin with the models from analysis

• Work with a single use case at a time

• Develop first-cut design class diagram

• Identify and define the methods required in each
class (e.g. using sequence diagram)

• First cut sequence diagram

• Multilayer sequence diagram

• Update the design class diagram

• Continue for additional use cases

• Partition classes into packages as appropriate

Multi-layer Sequence Diagrams

• The first-cut sequence diagram shows the
classes relevant to the business classes of the
use case – the domain layer

• We can add classes that explicitly handle the
view and data layers as well

• Add the view layer for input screens to handle
input messages

• Add data access layer to read and write the data

View layer class responsibilities

• Display electronic forms and reports

• Capture input events such as clicks, rollovers,
and key entries

• Display data fields

• Accept input data

• Edit and validate input data

• Forward input data to the domain layer classes

• Start and shut down the system

View layer

• Partial example: Fill shopping cart use case

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Domain layer class responsibilities

• Create problem domain (persistent) classes

• Process all business rules with appropriate logic

• Prepare persistent classes for storage to the
database

Data access layer class
responsibilities

• Establish and maintain connections to the
database

• Contain all SQL statements

• Process result sets (the results of SQL
executions) into appropriate domain objects

• Disconnect gracefully from the database

Data access layer
 • Partial example: Fill shopping cart use case

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

View layer, domain layer, data access layer

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

• The first-cut sequence diagram shows the classes
relevant to the business classes of the use case –
the domain layer

• We can add classes that explicitly handle the
view (boundary) and data layers of a three-layer
architecture as well:

• Add the view layer for input screens to handle
input messages

• Add data access layer to read and write the
data

Summing up…

Package diagrams

Design steps

• Begin with the models from analysis

• Work with a single use case at a time

• Develop first-cut design class diagram

• Identify and define the methods required in each
class (e.g. using sequence diagram)

• First cut sequence diagram

• Multilayer sequence diagram

• Update the design class diagram

• Continue for additional use cases

• Partition classes into packages as appropriate

Package diagrams

• Can be used to define formal packages such as
subsystems

• Can be used informally to group classes together for
understanding

• Dependency relationship:

• A relationship between packages (or classes within a
package) in which a change of the independent
component may require a change in the dependent
component

• Indicated by dashed line with arrow

• Arrow head points to independent element, i.e. AB
means A depends on B

Package Diagram

• Three-layer
package diagram
of classes in
previous slide

• Dependencies:

• View layer depends
on Data Access layer

• SearchItemWindow
depends on
ProductItem

etc.

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

After completing this topic you should be able to:

• Explain the purpose and objectives of object-oriented design

• Explain how object-oriented programs work by interacting objects
sending messages

• Develop first-cut and final design class diagrams

• Develop domain-level sequence diagrams to model object
behaviour

• Explain the different types of objects and layers in an object-
oriented design

• Briefly describe some fundamental principles of object-oriented
design

Topic learning outcomes

We’ve now concluded our coverage of the activities

involved in systems design. In the next topic, we’ll

look at activities relating to building and testing the

system, and deploying the completed system in the

organisation.

What’s next?

